Merge-and-Split Graph Convolutional Network for Skeleton-Based Interaction Recognition

Author:

Wang Haoqiang1ORCID,Wang Yong1,Yan Sheng1,Du Xin1,Gao Yuan2,Liu Hong3

Affiliation:

1. School of Artificial Intelligence, Chongqing University of Technology, Chongqing, China.

2. Computing Sciences (CS), Faculty of Information Technology and Communication Sciences (ITC), Tampere University, Tampere, Finland.

3. Key Laboratory of Machine Perception, Shenzhen Graduate School, Peking University, Beijing, China.

Abstract

We introduce an innovative approach to address a significant challenge in interaction recognition, specifically the capture of correlation features between different interaction body parts. These features are often overlooked by traditional graph convolution networks commonly used in interaction recognition tasks. Our solution, the Merge-and-Split Graph Convolutional Network, takes a unique perspective, treating interaction recognition as a global problem. It leverages a Merge-and-Split Graph structure to effectively capture dependencies between interaction body parts. To extract the essential interaction features, we introduce the Merge-and-Split Graph Convolution module, which seamlessly combines the Merge-and-Split Graph with Graph Convolutional Networks. This fusion enables the extraction of rich semantic information between adjacent joint points. In addition, we introduce a Short-term Dependence module designed to extract joint and motion characteristics specific to each type of interaction. Furthermore, to extract correlation features between different hierarchical sets, we present the Hierarchical Guided Attention Module. This module plays a crucial role in highlighting the relevant hierarchical sets that contain essential interaction information. The effectiveness of our proposed model is demonstrated by achieving state-of-the-art performance on 2 widely recognized datasets, namely, the NTU60 and NTU120 interaction datasets. Our model’s efficacy is rigorously validated through extensive experiments, and we have made the code available for the research community at https://github.com/wanghq05/MS-GCN/ .

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3