Heavier Load Alters Upper Limb Muscle Synergy with Correlated fNIRS Responses in BA4 and BA6

Author:

Chen Zhi12,Yan Jin12,Song Xiaohui1,Qiao Yongjun1,Loh Yong Joo3,Xie Qing12,Niu Chuanxin M.12

Affiliation:

1. Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

2. School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.

3. Department of Rehabilitation Medicine, Tan-Tock-Seng Hospital, Singapore.

Abstract

In neurorehabilitation, motor performances may improve if patients could accomplish the training by overcoming mechanical loads. When the load inertia is increased, it has been found to trigger linear responses in motor-related cortices. The cortical responses, however, are unclear whether they also correlate to changes in muscular patterns. Therefore, it remains difficult to justify the magnitude of load during rehabilitation because of the gap between cortical and muscular activation. Here, we test the hypothesis that increases in load inertia may alter the muscle synergies, and the change in synergy may correlate with cortical activation. Twelve healthy subjects participated in the study. Each subject lifted dumbbells (either 0, 3, or 15 pounds) from the resting position to the armpit repetitively at 1 Hz. Surface electromyographic signals were collected from 8 muscles around the shoulder and the elbow, and hemodynamic signals were collected using functional near-infrared spectroscopy from motor-related regions Brodmann Area 4 (BA4) and BA6. Results showed that, given higher inertia, the synergy vectors differed farther from the baseline. Moreover, synergy similarity on the vector decreased linearly with cortical responses in BA4 and BA6, which associated with increases in inertia. Despite studies in literature that movements with similar kinematics tend not to differ in synergy vectors, we show a different possibility that the synergy vectors may deviate from a baseline. At least 2 consequences of adding inertia have been identified: to decrease synergy similarity and to increase motor cortical activity. The dual effects potentially provide a new benchmark for therapeutic goal setting.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Applied Mathematics,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3