1U-Sized Deployable Space Manipulator for Future On-Orbit Servicing, Assembly, and Manufacturing

Author:

Liu Jinguo12,Zhao Pengyuan123ORCID,Chen Keli12,Zhang Xin12,Zhang Xiang4

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. National Innovation Institute of Defense Technology, Academy of Military Sciences, Beijing, China

Abstract

Miniaturized, multifunctional, and economical on-orbit service satellites have been increasingly used with the continuous increase of space exploration missions. In this paper, an innovative deployable manipulator is designed, named Cubot, which can be stowed in 1 U-sized ( 10 cm × 10 cm × 10 cm ) space. With CubeSat as the carrier, the deployable Cubot aims to achieve a variety of on-orbit operation tasks including space debris removal and space station on-orbit maintenance, for future on-orbit servicing, assembly, and manufacturing (OSAM). A kinematics modeling method of a space manipulator with passive joints is proposed, and the motion equation of the manipulator is derived. Considered the elastic potential energy stored in the passive joint during deployment, the momentum change of Cubot is simulated and analyzed. As the main forced element, the end effector is analyzed using FEA. Dynamic stress response with respect to the force distribution and the clamping angle is analyzed to evaluate mechanical performances of the end-effector component. Deployment tests are conducted to verify the feasibility of Cubot based on a principled prototype, which aims to provide engineering and practical experience for the development of this field.

Funder

CAS Interdisciplinary Innovation Team

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Reference35 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3