Direct Visualization of Deforming Atomic Wavefunction in Ultraintense High-Frequency Laser Pulses

Author:

Liang Jintai1ORCID,Zhou Yueming1ORCID,Liao Yijie1,Jiang Wei-Chao2,Li Min1,Lu Peixiang13

Affiliation:

1. School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

2. College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

3. Optics Valley Laboratory, Hubei 430074, China

Abstract

Interaction of intense laser fields with atoms distorts the bound-state electron cloud. Tracing the temporal response of the electron cloud to the laser field is of fundamental importance for understanding the ultrafast dynamics of various nonlinear phenomena of matter, but it is particularly challenging. Here, we show that the ultrafast response of the atomic electron cloud to the intense high-frequency laser pulses can be probed with the attosecond time-resolved photoelectron holography. In this method, an infrared laser pulse is employed to trigger tunneling ionization of the deforming atom. The shape of the deforming electron cloud is encoded in the hologram of the photoelectron momentum distribution. As a demonstration, by solving the time-dependent Schrödinger equation, we show that the adiabatic deforming of the bound-state electron cloud, as well as the nonadiabatic transition among the distorted states, is successfully tracked with attosecond resolution. Our work films the formation process of the metastable Kramers-Henneberger states in the intense high-frequency laser pulses. This establishes a novel approach for time-resolved imaging of the ultrafast bound-state electron processes in intense laser fields.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3