Tailoring Defects in Hard Carbon Anode towards Enhanced Na Storage Performance

Author:

Dong Ruiqi1,Wu Feng1,Bai Ying1ORCID,Li Qinghao2,Yu Xiqian2,Li Yu1,Ni Qiao1,Wu Chuan1ORCID

Affiliation:

1. Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academic of Science, Beijing 100190, China

Abstract

Hard carbon (HC) anodes show conspicuously commercialized potential for sodium-ion batteries (SIBs) due to their cost-effectiveness and satisfactory performance. However, the development of hard carbon anodes in SIBs is still hindered by low initial Coulombic efficiency (ICE) and insufficient cyclic stability, which are induced by inappropriate defects in the structure. Herein, we introduce a simple but effective method to tailor the defects in HC by the chemically preadsorbed K + . The soft X-ray absorption spectroscopy at the C K-edges reveals that K + can anchor on the hard carbon via C-O-K bonds, occupying the irreversible reactive sites of Na + . Therefore, the irreversible capacity caused by some C-O bonds can be reduced. Moreover, the preadsorbed K + can induce the rearrangement of carbon layers and lead to a high graphitization structure with fewer defects and large interlayer spacing, which not only improves the structural stability and electrical conductivity of the HC anode but also facilitates fast Na + diffusion. Therefore, the as-obtained optimized anode demonstrates a higher ICE with better cyclic stability and superior rate capacities compared with the anode without preadsorbed K + . This work indicates that K + preadsorbed into hard carbon is a practicable alternative to enhance the Na storage performances of HC anodes for SIBs.

Funder

DOE

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3