Progress and Perspective of the Cathode Materials towards Bromine-Based Flow Batteries

Author:

Tang Luyin12ORCID,Lu Wenjing1,Zhang Huamin1,Li Xianfeng1

Affiliation:

1. Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Bromine-based flow batteries (Br-FBs) have been one of the most promising energy storage technologies with attracting advantages of low price, wide potential window, and long cycle life, such as zinc-bromine flow battery, hydrogen-bromine flow battery, and sodium polysulfide-bromine flow battery. The research and development of aqueous Br-FBs are very fast and many achievements have been realized. However, Br-FBs suffer from the sluggish kinetics of Br 2 /Br - redox couple and serious self-discharge caused by the diffusion of bromine, which hinder the further commercialization and industrialization of the aqueous Br-FBs. A series of mitigation strategies have been developed to figure out these challenges, especially the modifications on electrode materials. Electrode, one of the critical components in a Br-FB, provides the reactions sites for redox couples, upon which its properties exert a significant effect on the performance of Br-FBs. Up to now, extensive research has been carried out on electrode modifications to solve the aforementioned notorious issues of Br-FBs, including surface treatment and surface modification. In this review, various electrode materials and relevant modification approaches used for Br-FBs are overviewed and summarized. Moreover, the relevant mechanisms are illustrated deeply, providing comprehensive and available instruction to pursue and develop high-performance cathodes for Br-FBs with high power density and long lifespan.

Funder

Natural Science Foundation of Liaoning Province

DICP funding

Key Project of Frontier Science, CAS

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3