Angle-Only Target Tracking Method for Optical Imaging Micro-/Nanosatellite Based on APSO-SSUKF

Author:

Hua Bing1ORCID,Yang Guang1,Wu Yunhua1,Chen Zhiming1

Affiliation:

1. School of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

To ensure the safety of the space station and improve the accuracy of the estimated trajectory tracking of noncooperative target, an optical imaging micro-/nanosatellite based on APSO-SSUKF (adaptive particle swarm optimization-spherical simplex unscented Kalman filter) is proposed to track low-orbit target using angle-only measurement. First, the algorithm considers the effect of J2 perturbation, uses the angle-only data as the observation vector, and uses spherical simplex unscented Kalman filter (SSUKF) to reduce the cost of calculation of the UKF in space noncooperative target tracking. Secondly, it is proposed to use the actual and theoretical covariance of the innovation sequence for real-time estimation of measurement noise, designing the adaptive particle swarm optimization (APSO) algorithm for real-time tracking of the process noise in the SSUKF that improves the accuracy of the filter in angle-only tracking. Finally, the tracking simulation of low-orbit satellite is carried out by using optical imaging micro-/nanosatellite, and the result shows that, compared with UKF, SSUKF, and PSO-SSUKF, APSO-SSUKF reduces the root mean square of the error in predicting the position in space target tracking by 45.44%, 35.26%, and 20.94%, and APSO-SSUKF reduces the root mean square of the error in velocity by 45.58%, 33.53%, and 16.33%, respectively; in the angle-tracking target, APSO-SSUKF improves the convergence and estimated accuracy of the algorithm in tracking.

Funder

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3