Surface-Condition-Dependent Deformation Mechanisms in Lead Nanocrystals

Author:

Zhang Hongtao1ORCID,Wang Wen1,Sun Jun1,Zhong Li1ORCID,He Longbing1ORCID,Sun Litao12ORCID

Affiliation:

1. SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China

2. Center for Advanced Materials and Manufacture, Southeast University-Monash University Joint Research Institute, Suzhou 215123, China

Abstract

Serving as nanoelectrodes or frame units, small-volume metals may critically affect the performance and reliability of nanodevices, especially with feature sizes down to the nanometer scale. Small-volume metals usually behave extraordinarily in comparison with their bulk counterparts, but the knowledge of how their sizes and surfaces give rise to their extraordinary properties is currently insufficient. In this study, we investigate the influence of surface conditions on mechanical behaviors in nanometer-sized Pb crystals by performing in situ mechanical deformation tests inside an aberration-corrected transmission electron microscope (TEM). Pseudoelastic deformation and plastic deformation processes were observed at atomic precision during deformation of pristine and surface-oxidized Pb particles, respectively. It is found that in most of the pristine Pb particles, surface atom diffusion dominates and leads to a pseudoelastic deformation behavior. In stark contrast, in surface-passivated Pb particles where surface atom diffusion is largely inhibited, deformation proceeds via displacive plasticity including dislocations, stacking faults, and twinning, leading to dominant plastic deformation without any pseudoelasticity. This research directly reveals the dramatic impact of surface conditions on the deformation mechanisms and mechanical behaviors of metallic nanocrystals, which provides significant implications for property tuning of the critical components in advanced nanodevices.

Funder

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3