Affiliation:
1. State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract
Wettability is one of a solid surface’s fundamental physical and chemical properties, which involves a wide range of applications. Femtosecond laser microfabrication has many advantages compared to traditional laser processing. This technology has been successfully applied to control the wettability of material surfaces. This review systematically summarizes the recent progress of femtosecond laser microfabrication in the preparation of various superwetting surfaces. Inspired by nature, the superwettabilities such as superhydrophilicity, superhydrophobicity, superamphiphobicity, underwater superoleophobicity, underwater superaerophobicity, underwater superaerophilicity, slippery liquid-infused porous surface, underwater superpolymphobicity, and supermetalphobicity are obtained on different substrates by the combination of the femtosecond laser-induced micro/nanostructures and appropriate chemical composition. From the perspective of biomimetic preparation, we mainly focus the methods for constructing various kinds of superwetting surfaces by femtosecond laser and the relationship between different laser-induced superwettabilities. The special wettability of solid materials makes the femtosecond laser-functionalized surfaces have many practical applications. Finally, the significant challenges and prospects of this field (femtosecond laser-induced superwettability) are discussed.
Funder
Fundamental Research Funds for the Central Universities
International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献