Nature-Inspired Superwettability Achieved by Femtosecond Lasers

Author:

Yong Jiale1,Yang Qing2,Hou Xun1,Chen Feng1

Affiliation:

1. State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Wettability is one of a solid surface’s fundamental physical and chemical properties, which involves a wide range of applications. Femtosecond laser microfabrication has many advantages compared to traditional laser processing. This technology has been successfully applied to control the wettability of material surfaces. This review systematically summarizes the recent progress of femtosecond laser microfabrication in the preparation of various superwetting surfaces. Inspired by nature, the superwettabilities such as superhydrophilicity, superhydrophobicity, superamphiphobicity, underwater superoleophobicity, underwater superaerophobicity, underwater superaerophilicity, slippery liquid-infused porous surface, underwater superpolymphobicity, and supermetalphobicity are obtained on different substrates by the combination of the femtosecond laser-induced micro/nanostructures and appropriate chemical composition. From the perspective of biomimetic preparation, we mainly focus the methods for constructing various kinds of superwetting surfaces by femtosecond laser and the relationship between different laser-induced superwettabilities. The special wettability of solid materials makes the femtosecond laser-functionalized surfaces have many practical applications. Finally, the significant challenges and prospects of this field (femtosecond laser-induced superwettability) are discussed.

Funder

Fundamental Research Funds for the Central Universities

International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Reference217 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3