Analytical Propagation of Space Debris Density for Collisions near Sun-Synchronous Orbits

Author:

Liu Yongjie1,Jiang Yu1ORCID,Li Hengnian1

Affiliation:

1. State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center, Xi’an 710043China

Abstract

The increasing frequency of human launches has led to a dramatic increase in the amount of space debris, especially near sun-synchronous orbits. Most of the fragments are small in size, which may make tracking difficult. Therefore, characterizing the distribution, evolution, and collision risk of small debris has long been a difficult issue. This paper is aimed at investigating the orbital evolution and global dispersion behavior of debris clouds near sun-synchronous orbits. Firstly, the NASA breakup model is used to provide an initial distribution of small fragments after collision events. Secondly, the continuity equation is adopted to propagate the density variation analytically. Furthermore, we introduce some statistical quantities and the entropy of debris clouds to model the randomness and band formation. A theorem concerning the equivalence of the band formation and maximal entropy is presented. The accuracy of the band formation time estimation is also discussed. For noncatastrophic collisions at an altitude of 800 km due to a projectile with a mass of 100 g and a collision velocity of 1 km/s, we compare the analytical and numerical results of space debris density. The results show that the maximal peak error is within 0.17, and the mean square error is about 0.25 at 400 days. Additionally, the entropy of right ascension of the ascending node is 8.5% less than that for debris clouds near an orbit with the same altitude and an inclination of 30 deg. This indicates the concentrating behavior for debris clouds near sun-synchronous orbits.

Funder

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Reference36 articles.

1. Ranking upper stages in low earth orbit for active removal;Anselmo L.;Acta Astronautica,2016

2. Review of debris-cloud modeling techniques;Barrows S. P.;Journal of Spacecraft and Rockets,1996

3. Orbit propagation using semi-analytical theory and its applications in space debris field;Dutt P.;Astrophysics & Space Science,2017

4. A phased approach to collision hazard analysis;Mcknight D.;Advances in Space Research,1990

5. R. Jehn “Dispersion of debris clouds from in-orbit fragmentation events ” in Dresden International Astronautical Federation Congress Dresden Federal Republic of Germany 1991

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3