Gravity-Dependent Animacy Perception in Zebrafish

Author:

Ma Xiaohan123,Yuan Xiangyong123ORCID,Liu Jiahuan1,Shen Li123,Yu Yiwen123,Zhou Wen123ORCID,Liu Zuxiang245ORCID,Jiang Yi1235ORCID

Affiliation:

1. State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Chinese Institute for Brain Research, Beijing 102206, China

4. State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

5. Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China

Abstract

Biological motion (BM), depicted by a handful of point lights attached to the major joints, conveys rich animacy information, which is significantly disrupted if BM is shown upside down. This well-known inversion effect in BM perception is conserved in terrestrial vertebrates and is presumably a manifestation of an evolutionarily endowed perceptual filter (i.e., life motion detector) tuned to gravity-compatible BM. However, it remains unknown whether aquatic animals, living in a completely different environment from terrestrial animals, perceive BM in a gravity-dependent manner. Here, taking advantage of their typical shoaling behaviors, we used zebrafish as a model animal to examine the ability of teleosts to discriminate between upright (gravity-compatible) and inverted (gravity-incompatible) BM signals. We recorded their swimming trajectories and quantified their preference based on dwelling time and head orientation. The results obtained from three experiments consistently showed that zebrafish spent significantly more time swimming in proximity to and orienting towards the upright BM relative to the inverted BM or other gravity-incompatible point-light stimuli (i.e., the non-BM). More intriguingly, when the recorded point-light video clips of fish were directly compared with those of human walkers and pigeons, we could identify a unique and consistent pattern of accelerating movements in the vertical (gravity) direction. These findings, to our knowledge, demonstrate for the first time the inversion effect in BM perception in simple aquatic vertebrates and suggest that the evolutionary origin of gravity-dependent BM processing may be traced back to ancient aquatic animals.

Funder

Fundamental Research Funds for the Central Universities

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Strategic Priority Research Program and the Key Research Program of Frontier Sciences

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3