Air-Resistant Lead Halide Perovskite Nanocrystals Embedded into Polyimide of Intrinsic Microporosity

Author:

Yang Haoze1,Gutiérrez-Arzaluz Luis1ORCID,Maity Partha1ORCID,Abdulhamid Mahmoud A.2ORCID,Yin Jun1ORCID,Zhou Yang1,Chen Cailing2,Han Yu2ORCID,Szekely Gyorgy2ORCID,Bakr Osman M.3,Mohammed Omar F.1ORCID

Affiliation:

1. Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

2. Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

3. KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Abstract

Although cesium lead halide perovskite (CsPbX3, X = Cl, Br, or I) nanocrystals (PNCs) have been rapidly developed for multiple optoelectronic applications due to their outstanding optical and transport properties, their device fabrication and commercialization have been limited by their low structural stability, especially under environmental conditions. In this work, a new approach has been developed to protect the surface of these nanocrystals, which results in enhanced chemical stability and optical properties. This method is based on the encapsulation of CsPbX3 NCs into a polyimide with intrinsic microporosity (PIM-PI), 4,4-(hexafluoroisopropylidene)diphthalic anhydride reacted with 2,4,6-trimethyl-m-phenylenediamine (6FDA-TrMPD). The presence of 6FDA-TrMPD as a protective layer can efficiently isolate NCs from an air environment and subsequently enhance their optical and photoluminescence stability. More specifically, comparing NCs treated with a polymer to as-synthesized nanocrystals after 168 h, we observe that the PL intensity decreased by 70% and 20% for the NCs before and after polymer treatment. In addition, the PNC film with a polymer shows a much longer excited-state lifetime than the as-synthesized nanocrystals, indicating that the surface trap states are significantly reduced in the treated PNCs. The enhancement in chemical and air stability, as well as optical behavior, will further improve the performance of CsPbBr3 PNCs yielding promising optical devices and paving the way for their production and implementation at a large scale.

Funder

King Abdullah University of Science and Technology

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3