Microscopic Insight to Nonlinear Voltage Dependence of Charge in Carbon-Ionic Liquid Supercapacitors

Author:

Mehandzhiyski Aleksandar Y.1ORCID,Wang Xuehang1ORCID,Anquetil-Deck Candy1ORCID,Chen De1ORCID,Grimes Brian A.1ORCID

Affiliation:

1. Norwegian University of Science and Technology, Department of Chemical Engineering, Sem Sælandsvei 4, N-7491 Trondheim, Norway

Abstract

The impact of cell voltage on the capacitance of practical electrochemical supercapacitors is a phenomenon observed experimentally, which lacks a solid theoretical explanation. Herein, we provide combined experimental and molecular dynamics investigation of the relation between voltage and capacitance. We have studied this relation in supercapacitor cells comprising of activated carbon material as the active electrode material, and neat ionic liquids (ILs), and a mixture of ILs as the electrolyte. It has been observed that the increase of accumulative charge impacts the conformation and packing of the cations in the anode, which determines its nonlinear behavior with increasing voltage. It has also been shown that for the mixture IL with two types of cations, the contribution of each type of cation to the overall capacitance is highly dependent on the different pore sizes in the system. The smaller tetramethylammonium (TMA+) shows tendency for more efficient adsorption in the mesopores, while 1-Ethyl-3-methylimidazolium (EMIM+) is found to be present almost exclusively in the micropores where TMA+ is present in small quantities. Such microscopic insights from computer simulations of the molecular phenomena affecting the overall performance in supercapacitors can help to design more efficient electrolytes and devices.

Funder

Norges Forskningsråd

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3