Synthesis of Polypeptides with High-Fidelity Terminal Functionalities under NCA Monomer-Starved Conditions

Author:

Li Lei1,Cen Jie1,Pan Wenhao1,Zhang Yuben1,Leng Xuanxi1,Tan Zhengqi1,Yin Hao2,Liu Shiyong1ORCID

Affiliation:

1. Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China

2. Mass Spectrometry Lab, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China

Abstract

Controlled polypeptide synthesis via α-amino acid N-carboxylic anhydride (NCA) polymerization using conventional primary amine initiators encounters two major obstacles: (i) normal amine mechanism (NAM) and activated monomer mechanism (AMM) coexist due to amine basicity and nucleophilicity and (ii) NCA is notoriously sensitive towards moisture and heat and unstable upon storage. We serendipitously discover that N-phenoxycarbonyl-functionalized α-amino acid (NPCA), a latent NCA precursor, could be polymerized solely based on NAM with high initiating efficiency by using primary amine hydrochloride as an initiator. The polymerization affords well-defined polypeptides with narrow polydispersity and high-fidelity terminal functionalities, as revealed by the clean set of MALDI-TOF MS patterns. We further demonstrate successful syntheses of random and block copolypeptides, even under open-vessel conditions. Overall, the integration of moisture-insensitive and air-tolerant NPCA precursors with stable primary amine hydrochloride initiators represents a general strategy for controlled synthesis of high-fidelity polypeptides with sophisticated functions.

Funder

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3