The Application of UAV-Based Hyperspectral Imaging to Estimate Crop Traits in Maize Inbred Lines

Author:

Shu Meiyan1ORCID,Shen Mengyuan1,Zuo Jinyu1,Yin Pengfei2,Wang Min2ORCID,Xie Ziwen1,Tang Jihua3,Wang Ruili4,Li Baoguo1,Yang Xiaohong2ORCID,Ma Yuntao1

Affiliation:

1. College of Land Science and Technology, China Agricultural University, Beijing 100193, China

2. State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China

3. College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China

4. Agricultural Artificial Intelligence and Crop Phenotype Engineering Research Center, Inner Mongolia Institute of Biotechnology, Huhhot 010070, China

Abstract

Crop traits such as aboveground biomass (AGB), total leaf area (TLA), leaf chlorophyll content (LCC), and thousand kernel weight (TWK) are important indices in maize breeding. How to extract multiple crop traits at the same time is helpful to improve the efficiency of breeding. Compared with digital and multispectral images, the advantages of high spatial and spectral resolution of hyperspectral images derived from unmanned aerial vehicle (UAV) are expected to accurately estimate the similar traits among breeding materials. This study is aimed at exploring the feasibility of estimating AGB, TLA, SPAD value, and TWK using UAV hyperspectral images and at determining the optimal models for facilitating the process of selecting advanced varieties. The successive projection algorithm (SPA) and competitive adaptive reweighted sampling (CARS) were used to screen sensitive bands for the maize traits. Partial least squares (PLS) and random forest (RF) algorithms were used to estimate the maize traits. The results can be summarized as follows: The sensitive bands for various traits were mainly concentrated in the near-red and red-edge regions. The sensitive bands screened by CARS were more abundant than those screened by SPA. For AGB, TLA, and SPAD value, the optimal combination was the CARS-PLS method. Regarding the TWK, the optimal combination was the CARS-RF method. Compared with the model built by RF, the model built by PLS was more stable. This study provides guiding significance and practical value for main trait estimation of maize inbred lines by UAV hyperspectral images at the plot level.

Funder

Inner Mongolia Science and technology project

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Literature and Literary Theory,Music,Agronomy and Crop Science,Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3