Automatically Monitoring Impervious Surfaces Using Spectral Generalization and Time Series Landsat Imagery from 1985 to 2020 in the Yangtze River Delta

Author:

Zhang Xiao1,Liu Liangyun1,Chen Xidong1,Gao Yuan1,Jiang Mihang1

Affiliation:

1. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Accurately monitoring the spatiotemporal dynamics of impervious surfaces is very important for understanding the process of urbanization. However, the complicated makeup and spectral heterogeneity of impervious surfaces create difficulties for impervious surface monitoring. In this study, we propose an automatic method to capture the spatiotemporal expansion of impervious surfaces using spectral generalization and time series Landsat imagery. First, the multitemporal compositing and relative radiometric normalization methods were used to extract phenological information and ensure spectral consistency between reference imagery and monitored imagery. Second, we automatically derived training samples from the prior MSMT_IS30-2020 impervious surface products and migrated the surface reflectance of impervious surfaces in the reference period of 2020 to other periods (1985–2015). Third, the random forest classification method, trained using the migrated surface reflectance of impervious surfaces and pervious surface training samples at each period, was employed to extract temporally independent impervious surfaces. Further, a temporal consistency check method was applied to ensure the consistency and reliability of the monitoring results. According to qualitative and quantitative validation results, the method achieved an overall accuracy of 90.9% and kappa coefficient of 0.859 in identifying the spatiotemporal expansion of impervious surfaces and performed better in capturing the impervious surface dynamics when compared with other impervious surface datasets. Lastly, our results indicate that a rapid increase of impervious surfaces was observed in the Yangtze River Delta, and the area of impervious surfaces in 2000 and 2020 was 1.86 times and 4.76 times that of 1985, respectively. Therefore, it could be concluded that the proposed method offered a novel perspective for providing timely and accurate impervious surface dynamics.

Funder

Chinese Academy of Sciences

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3