Confidence Measure of the Shallow-Water Bathymetry Map Obtained through the Fusion of Lidar and Multiband Image Data

Author:

Lee Zhongping1ORCID,Shangguan Mingjia2,Garcia Rodrigo A.13ORCID,Lai Wendian2,Lu Xiaomei4ORCID,Wang Junwei2,Yan Xiaolei2ORCID

Affiliation:

1. School for the Environment, University of Massachusetts Boston, Boston, MA 02125, USA

2. State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China

3. School of Earth Sciences, University of Western Australia, Crawley, WA 6009, Australia

4. Science Systems and Applications, Inc., Hampton, VA 23666, USA

Abstract

With the advancement of Lidar technology, bottom depth (H) of optically shallow waters (OSW) can be measured accurately with an airborne or space-borne Lidar system (HLidar hereafter), but this data product consists of a line format, rather than the desired charts or maps, particularly when the Lidar system is on a satellite. Meanwhile, radiometric measurements from multiband imagers can also be used to infer H (Himager hereafter) of OSW with variable accuracy, though a map of bottom depth can be obtained. It is logical and advantageous to use the two data sources from collocated measurements to generate a more accurate bathymetry map of OSW, where usually image-specific empirical algorithms are developed and applied. Here, after an overview of both the empirical and semianalytical algorithms for the estimation of H from multiband imagers, we emphasize that the uncertainty of Himager varies spatially, although it is straightforward to draw regressions between HLidar and radiometric data for the generation of Himager. Further, we present a prototype system to map the confidence of Himager pixel-wise, which has been lacking until today in the practices of passive remote sensing of bathymetry. We advocate the generation of a confidence measure in parallel with Himager, which is important and urgent for broad user communities.

Funder

University of Massachusetts Boston

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3