Sequence-Defined Nanotubes Assembled from IR780-Conjugated Peptoids for Chemophototherapy of Malignant Glioma

Author:

Cai Xiaoli1,Wang Mingming2,Mu Peng23,Jian Tengyue2,Liu Dong1,Ding Shichao1ORCID,Luo Yanan1,Du Dan1ORCID,Song Yang1ORCID,Chen Chun-Long2ORCID,Lin Yuehe1ORCID

Affiliation:

1. School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, USA

2. Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA

3. Department of Mechanical Engineering and Materials Science and Engineering Program, State University of New York, Binghamton, New York 13902, USA

Abstract

Near-infrared (NIR) laser-induced phototherapy through NIR agents has demonstrated the great potential for cancer therapy. However, insufficient tumor killing due to the nonuniform heat or cytotoxic singlet oxygen (1O2) distribution over tumors from phototherapy results in tumor recurrence and inferior outcomes. To achieve high tumor killing efficacy, one of the solutions is to employ the combinational treatment of phototherapy with other modalities, especially with chemotherapeutic agents. In this paper, a simple and effective multimodal therapeutic system was designed via combining chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT) to achieve the polytherapy of malignant glioma which is one of the most aggressive tumors in the brain. IR-780 (IR780) dye-labeled tube-forming peptoids (PepIR) were synthesized and self-assembled into crystalline nanotubes (PepIR nanotubes). These PepIR nanotubes showed an excellent efficacy for PDT/PTT because the IR780 photosensitizers were effectively packed and separated from each other within crystalline nanotubes by tuning IR780 density; thus, a self-quenching of these IR780 molecules was significantly reduced. Moreover, the efficient DOX loading achieved due to the nanotube large surface area contributed to an efficient and synergistic chemotherapy against glioma cells. Given the unique properties of peptoids and peptoid nanotubes, we believe that the developed multimodal DOX-loaded PepIR nanotubes in this work offer great promises for future glioma therapy in clinic.

Funder

Office of Science

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3