Antibacterial Immunonegative Coating with Biocompatible Materials on a Nanostructured Titanium Plate for Orthopedic Bone Fracture Surgery

Author:

Lee Jeong-Won1ORCID,Cho Jung-Ah23,Roh Yoo Jin4,Han Min Ae45,Jeong Je-Un1,Subramanian Sivakumar Allur2,Kang Eunho4,Yeom Jiwoo4,Lee Chang-Hun45,Kim Sung Jae2

Affiliation:

1. Department of Mechanical Engineering, Chosun University, Gwangju 61452, Republic of Korea.

2. Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea.

3. College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.

4. Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.

5. New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.

Abstract

Periprosthetic infections resulting from bacterial biofilm formation following surgical bone fracture fixation present important clinical challenges. Conventional orthopedic implant materials, such as titanium, are prone to biofilm formation. This study introduces a novel surface for orthopedic titanium plates, optimized for clinical application in human bone fractures. Leveraging nanostructure-based surface coating technology, the plate achieves an antibacterial/immunonegative surface using biocompatible materials, including poloxamer 407, epigallocatechin gallate, and octanoic acid. These materials demonstrate high biocompatibility and thermal stability after autoclaving. The developed plate, named antibacterial immunonegative surface, releases antibacterial agents and prevents adhesion between human tissue and metal surfaces. Antibacterial immunonegative surface plates exhibit low cell toxicity, robust antibacterial effects against pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa , high resistance to biofilm formation on the implant surface and surrounding tissues, and minimal immune reaction in a rabbit femoral fracture model. This innovation holds promise for addressing periprosthetic infections and improving the performance of orthopedic implants.

Funder

Korea Medical Device Development Fund

National Research Foundation of Korea

Hallym University

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3