Plant Phenotyping: Past, Present, and Future

Author:

Pieruschka Roland1,Schurr Uli1

Affiliation:

1. IBG-2 Plant Sciences, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

Abstract

A plant develops the dynamic phenotypes from the interaction of the plant with the environment. Understanding these processes that span plant’s lifetime in a permanently changing environment is essential for the advancement of basic plant science and its translation into application including breeding and crop management. The plant research community was thus confronted with the need to accurately measure diverse traits of an increasingly large number of plants to help plants to adapt to resource-limiting environment and low-input agriculture. In this overview, we outline the development of plant phenotyping as a multidisciplinary field. We sketch the technological advancement that laid the foundation for the development of phenotyping centers and evaluate the upcoming challenges for further advancement of plant phenotyping specifically with respect to standardization of data acquisition and reusability. Finally, we describe the development of the plant phenotyping community as an essential step to integrate the community and effectively use the emerging synergies.

Funder

Horizon 2020 Framework Programme

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Cited by 174 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3