Global Wheat Head Detection Challenges: Winning Models and Application for Head Counting

Author:

David Etienne12,Ogidi Franklin3,Smith Daniel4,Chapman Scott4,de Solan Benoit2,Guo Wei5,Baret Frederic1,Stavness Ian3

Affiliation:

1. UMR 1114 EMMAH, INRAE, Avignon, France.

2. Arvalis – Institut du Végétal, Paris, France.

3. Department of Computer Science, University of Saskatchewan, Saskatoon, Canada.

4. School of Food and Agricultural Sciences, University of Queensland, Brisbane, Australia.

5. Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.

Abstract

Data competitions have become a popular approach to crowdsource new data analysis methods for general and specialized data science problems. Data competitions have a rich history in plant phenotyping, and new outdoor field datasets have the potential to embrace solutions across research and commercial applications. We developed the Global Wheat Challenge as a generalization competition in 2020 and 2021 to find more robust solutions for wheat head detection using field images from different regions. We analyze the winning challenge solutions in terms of their robustness when applied to new datasets. We found that the design of the competition had an influence on the selection of winning solutions and provide recommendations for future competitions to encourage the selection of more robust solutions.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3