EasyDAM_V3: Automatic Fruit Labeling Based on Optimal Source Domain Selection and Data Synthesis via a Knowledge Graph

Author:

Zhang Wenli1,Liu Yuxin1,Zheng Chao1,Cui Guoqiang1,Guo Wei2ORCID

Affiliation:

1. Information Department, Beijing University of Technology, Beijing 100022, China.

2. Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 188-0002, Japan.

Abstract

Although deep learning-based fruit detection techniques are becoming popular, they require a large number of labeled datasets to support model training. Moreover, the manual labeling process is time-consuming and labor-intensive. We previously implemented a generative adversarial network-based method to reduce labeling costs. However, it does not consider fitness among more species. Methods of selecting the most suitable source domain dataset based on the fruit datasets of the target domain remain to be investigated. Moreover, current automatic labeling technology still requires manual labeling of the source domain dataset and cannot completely eliminate manual processes. Therefore, an improved EasyDAM_V3 model was proposed in this study as an automatic labeling method for additional classes of fruit. This study proposes both an optimal source domain establishment method based on a multidimensional spatial feature model to select the most suitable source domain, and a high-volume dataset construction method based on transparent background fruit image translation by constructing a knowledge graph of orchard scene hierarchy component synthesis rules. The EasyDAM_V3 model can automatically obtain fruit label information from the dataset, thereby eliminating manual labeling. To test the proposed method, pear was used as the selected optimal source domain, followed by orange, apple, and tomato as the target domain datasets. The results showed that the average precision of annotation reached 90.94%, 89.78%, and 90.84% for the target datasets, respectively. The EasyDAM_V3 model can obtain the optimal source domain in automatic labeling tasks, thus eliminating the manual labeling process and reducing associated costs and labor.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3