Toward Real Scenery: A Lightweight Tomato Growth Inspection Algorithm for Leaf Disease Detection and Fruit Counting

Author:

Kang Rui12,Huang Jiaxin1,Zhou Xuehai2,Ren Ni1,Sun Shangpeng2ORCID

Affiliation:

1. Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210044, China.

2. Bioresource Engineering Department, McGill University, Montreal, QC H9X 3V9, Canada.

Abstract

The deployment of intelligent surveillance systems to monitor tomato plant growth poses substantial challenges due to the dynamic nature of disease patterns and the complexity of environmental conditions such as background and lighting. In this study, an integrated cascade framework that synergizes detectors and trackers was introduced for the simultaneous identification of tomato leaf diseases and fruit counting. We applied an autonomous robot with smartphone camera to collect images for leaf disease and fruits in greenhouses. Further, we improved the deep learning network YOLO-TGI by incorporating Ghost and CBAM modules, which was trained and tested in conjunction with premier lightweight detection models like YOLOX and NanoDet in evaluating leaf health conditions. For the cascading with various base detectors, we integrated state-of-the-art trackers such as Byte-Track, Motpy, and FairMot to enable fruit counting in video streams. Experimental results indicated that the combination of YOLO-TGI and Byte-Track achieved the most robust performance. Particularly, YOLO-TGI-N emerged as the model with the least computational demands, registering the lowest FLOPs at 2.05 G and checkpoint weights at 3.7 M, while still maintaining a mAP of 0.72 for leaf disease detection. Regarding the fruit counting, the combination of YOLO-TGI-S and Byte-Track achieved the best R 2 of 0.93 and the lowest RMSE of 9.17, boasting an inference speed that doubles that of the YOLOX series, and is 2.5 times faster than the NanoDet series. The developed network framework is a potential solution for researchers facilitating the deployment of similar surveillance models for a broad spectrum of fruit and vegetable crops.

Funder

National Key Research and Development Program of China

Key Research and Development Program of Jiangsu Province

the Agricultural Independent Innovation of Jiangsu Province

National Natural Science Foundation of China

Fonds de recherche du Québec – Nature et technologies

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3