Analyzing Nitrogen Effects on Rice Panicle Development by Panicle Detection and Time-Series Tracking

Author:

Zhou Qinyang1,Guo Wei2,Chen Na1,Wang Ze1,Li Ganghua1,Ding Yanfeng1,Ninomiya Seishi12,Mu Yue1

Affiliation:

1. College of Agriculture, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing 210095, China.

2. Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishi-Tokyo, Tokyo 188-0002, Japan.

Abstract

Detailed observation of the phenotypic changes in rice panicle substantially helps us to understand the yield formation. In recent studies, phenotyping of rice panicles during the heading–flowering stage still lacks comprehensive analysis, especially of panicle development under different nitrogen treatments. In this work, we proposed a pipeline to automatically acquire the detailed panicle traits based on time-series images by using the YOLO v5, ResNet50, and DeepSORT models. Combined with field observation data, the proposed method was used to test whether it has an ability to identify subtle differences in panicle developments under different nitrogen treatments. The result shows that panicle counting throughout the heading–flowering stage achieved high accuracy ( R 2 = 0.96 and RMSE = 1.73), and heading date was estimated with an absolute error of 0.25 days. In addition, by identical panicle tracking based on the time-series images, we analyzed detailed flowering phenotypic changes of a single panicle, such as flowering duration and individual panicle flowering time. For rice population, with an increase in the nitrogen application: panicle number increased, heading date changed little, but the duration was slightly extended; cumulative flowering panicle number increased, rice flowering initiation date arrived earlier while the ending date was later; thus, the flowering duration became longer. For a single panicle, identical panicle tracking revealed that higher nitrogen application led to earlier flowering initiation date, significantly longer flowering days, and significantly longer total duration from vigorous flowering beginning to the end (total DBE). However, the vigorous flowering beginning time showed no significant differences and there was a slight decrease in daily DBE.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3