Root System Traits Contribute to Variability and Plasticity in Response to Phosphorus Fertilization in 2 Field-Grown Sorghum [ Sorghum bicolor (L.) Moench] Cultivars

Author:

Adu Michael O.1,Asare Paul A.1,Yawson David O.2,Amoah Kwadwo K.1,Atiah Kofi3,Duah Matthew K.1,Graham Alex1

Affiliation:

1. Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.

2. Centre for Resource Management and Environmental Studies (CERMES), The University of the West Indies, Cave Hill Campus, P.O. Box 64, Bridgetown BB11000, Barbados.

3. Department of Soil Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.

Abstract

Due to roots’ physical and physiological roles in crop productivity, interest in root system architecture (RSA) and plasticity in responses to abiotic stresses is growing. Sorghum is significant for the food security of millions of people. Phosphorus deficiency is an important limitation of sorghum productivity. There is little information on the RSA-based responses of sorghum to variations in external P supply ([P] ext ). This study evaluated the phenotypic plasticity and RSA responses to a range of [P] ext in 2 sorghum genotypes. The results showed that both genotypes responded to [P] ext but with significant variations in about 80% of the RSA traits analyzed. Aboveground biomass and most RSA traits increased with increasing [P] ext . Plasticity was both genotype- and trait-dependent. For most RSA traits, the white sorghum genotype showed significantly higher plasticity than the red genotype, with the former having about 28.4% higher total plasticity than the former. RSA traits, such as convex area, surface area, total root length, and length diameter ranges, showed sizeable genetic variability. Root biomass had a high degree of plasticity, but root number and angle traits were the leading contributors to variation. The results suggested 2 root trait spectra: root exploration and developmental spectrum, and there was an indication of potential trade-offs among groups of root traits. It is concluded that RSA traits in sorghum contribute to variability and plasticity in response to [P] ext . Given that there might be trade-offs among sorghum root traits, it would be instructive to determine the fundamental constraints underlying these trade-offs.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3