Noninvasive Detection of Salt Stress in Cotton Seedlings by Combining Multicolor Fluorescence–Multispectral Reflectance Imaging with EfficientNet-OB2

Author:

Li Jiayi12ORCID,Zeng Haiyan12,Huang Chenxin1,Wu Libin12,Ma Jie1,Zhou Beibei3,Ye Dapeng12,Weng Haiyong12ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

2. Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.

3. State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, Shaanxi, China.

Abstract

Salt stress is considered one of the primary threats to cotton production. Although cotton is found to have reasonable salt tolerance, it is sensitive to salt stress during the seedling stage. This research aimed to propose an effective method for rapidly detecting salt stress of cotton seedlings using multicolor fluorescence–multispectral reflectance imaging coupled with deep learning. A prototyping platform that can obtain multicolor fluorescence and multispectral reflectance images synchronously was developed to get different characteristics of each cotton seedling. The experiments revealed that salt stress harmed cotton seedlings with an increase in malondialdehyde and a decrease in chlorophyll content, superoxide dismutase, and catalase after 17 days of salt stress. The Relief algorithm and principal component analysis were introduced to reduce data dimension with the first 9 principal component images (PC1 to PC9) accounting for 95.2% of the original variations. An optimized EfficientNet-B2 (EfficientNet-OB2), purposely used for a fixed resource budget, was established to detect salt stress by optimizing a proportional number of convolution kernels assigned to the first convolution according to the corresponding contributions of PC1 to PC9 images. EfficientNet-OB2 achieved an accuracy of 84.80%, 91.18%, and 95.10% for 5, 10, and 17 days of salt stress, respectively, which outperformed EfficientNet-B2 and EfficientNet-OB4 with higher training speed and fewer parameters. The results demonstrate the potential of combining multicolor fluorescence–multispectral reflectance imaging with the deep learning model EfficientNet-OB2 for salt stress detection of cotton at the seedling stage, which can be further deployed in mobile platforms for high-throughput screening in the field.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3