Identifying Regenerated Saplings by Stratifying Forest Overstory Using Airborne LiDAR Data

Author:

Du Liming12,Pang Yong12

Affiliation:

1. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China.

2. Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China.

Abstract

Identifying the spatiotemporal distributions and phenotypic characteristics of understory saplings is beneficial in exploring the internal mechanisms of plant regeneration and providing technical assistances for continues cover forest management. However, it is challenging to detect the understory saplings using 2-dimensional (2D) spectral information produced by conventional optical remotely sensed data. This study proposed an automatic method to detect the regenerated understory saplings based on the 3D structural information from aerial laser scanning (ALS) data. By delineating individual tree crown using the improved spectral clustering algorithm, we successfully removed the overstory canopy and associated trunk points. Then, individual understory saplings were segmented using an adaptive-mean-shift-based clustering algorithm. This method was tested in an experimental forest farm of North China. Our results showed that the detection rates of understory saplings ranged from 94.41% to 152.78%, and the matching rates increased from 62.59% to 95.65% as canopy closure went down. The ALS-based sapling heights well captured the variations of field measurements [ R 2 = 0.71, N = 3,241, root mean square error (RMSE) = 0.26 m, P < 0.01] and terrestrial laser scanning (TLS)-based measurements ( R 2 = 0.78, N =443, RMSE = 0.23 m, P < 0.01). The ALS-based sapling crown width was comparable with TLS-based measurements ( R 2 = 0.64, N = 443, RMSE = 0.24 m). This study provides a solution for the quantification of understory saplings, which can be used to improve forest ecosystem resilence through regulating the dynamics of forest gaps to better utilize light resources.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3