High-Throughput Spike Detection in Greenhouse Cultivated Grain Crops with Attention Mechanisms-Based Deep Learning Models

Author:

Ullah Sajid123,Panzarová Klára3,Trtílek Martin3,Lexa Matej4,Máčala Vojtěch4,Neumann Kerstin5,Altmann Thomas5,Hejátko Jan12,Pernisová Markéta12,Gladilin Evgeny5

Affiliation:

1. Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.

2. National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.

3. Photon Systems Instruments, spol. s r.o., Drasov, Czech Republic.

4. Faculty of Informatics, Masaryk University, Botanicka 68a, Brno, Czech Republic.

5. Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland OT Gatersleben, Germany.

Abstract

Detection of spikes is the first important step toward image-based quantitative assessment of crop yield. However, spikes of grain plants occupy only a tiny fraction of the image area and often emerge in the middle of the mass of plant leaves that exhibit similar colors to spike regions. Consequently, accurate detection of grain spikes renders, in general, a non-trivial task even for advanced, state-of-the-art deep neural networks (DNNs). To improve pattern detection in spikes, we propose architectural changes to Faster-RCNN (FRCNN) by reducing feature extraction layers and introducing a global attention module. The performance of our extended FRCNN-A vs. conventional FRCNN was compared on images of different European wheat cultivars, including “difficult” bushy phenotypes from 2 different phenotyping facilities and optical setups. Our experimental results show that introduced architectural adaptations in FRCNN-A helped to improve spike detection accuracy in inner regions. The mean average precision (mAP) of FRCNN and FRCNN-A on inner spikes is 76.0% and 81.0%, respectively, while on the state-of-the-art detection DNNs, Swin Transformer mAP is 83.0%. As a lightweight network, FRCNN-A is faster than FRCNN and Swin Transformer on both baseline and augmented training datasets. On the FastGAN augmented dataset, FRCNN achieved a mAP of 84.24%, FRCNN-A attained a mAP of 85.0%, and the Swin Transformer achieved a mAP of 89.45%. The increase in mAP of DNNs on the augmented datasets is proportional to the amount of the IPK original and augmented images. Overall, this study indicates a superior performance of attention mechanisms-based deep learning models in detecting small and subtle features of grain spikes.

Funder

European Regional Development Fund

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3