Rice Plant Counting, Locating, and Sizing Method Based on High-Throughput UAV RGB Images

Author:

Bai Xiaodong1,Liu Pichao2,Cao Zhiguo3,Lu Hao3,Xiong Haipeng4,Yang Aiping5,Cai Zhe5,Wang Jianjun5,Yao Jianguo2

Affiliation:

1. School of Computer Science and Technology, Hainan University, Haikou 570228, China.

2. School of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.

3. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China.

4. School of Computing, National University of Singapore, Singapore 119077, Singapore.

5. Agricultural Meteorological Center, Jiangxi Meteorological Bureau, Nanchang 330045, China.

Abstract

Rice plant counting is crucial for many applications in rice production, such as yield estimation, growth diagnosis, disaster loss assessment, etc. Currently, rice counting still heavily relies on tedious and time-consuming manual operation. To alleviate the workload of rice counting, we employed an UAV (unmanned aerial vehicle) to collect the RGB images of the paddy field. Then, we proposed a new rice plant counting, locating, and sizing method (RiceNet), which consists of one feature extractor frontend and 3 feature decoder modules, namely, density map estimator, plant location detector, and plant size estimator. In RiceNet, rice plant attention mechanism and positive–negative loss are designed to improve the ability to distinguish plants from background and the quality of the estimated density maps. To verify the validity of our method, we propose a new UAV-based rice counting dataset, which contains 355 images and 257,793 manual labeled points. Experiment results show that the mean absolute error and root mean square error of the proposed RiceNet are 8.6 and 11.2, respectively. Moreover, we validated the performance of our method with two other popular crop datasets. On these three datasets, our method significantly outperforms state-of-the-art methods. Results suggest that RiceNet can accurately and efficiently estimate the number of rice plants and replace the traditional manual method.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Agronomy and Crop Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3