To What Extent Does Yellow Rust Infestation Affect Remotely Sensed Nitrogen Status?

Author:

Carlier Alexis1ORCID,Dandrifosse Sebastien1ORCID,Dumont Benjamin2ORCID,Mercatoris Benoît1

Affiliation:

1. Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.

2. Plant Sciences, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.

Abstract

The utilization of high-throughput in-field phenotyping systems presents new opportunities for evaluating crop stress. However, existing studies have primarily focused on individual stresses, overlooking the fact that crops in field conditions frequently encounter multiple stresses, which can display similar symptoms or interfere with the detection of other stress factors. Therefore, this study aimed to investigate the impact of wheat yellow rust on reflectance measurements and nitrogen status assessment. A multi-sensor mobile platform was utilized to capture RGB and multispectral images throughout a 2-year fertilization-fungicide trial. To identify disease-induced damage, the SegVeg approach, which combines a U-NET architecture and a pixel-wise classifier, was applied to RGB images, generating a mask capable of distinguishing between healthy and damaged areas of the leaves. The observed proportion of damage in the images demonstrated similar effectiveness to visual scoring methods in explaining grain yield. Furthermore, the study discovered that the disease not only affected reflectance through leaf damage but also influenced the reflectance of healthy areas by disrupting the overall nitrogen status of the plants. This emphasizes the importance of incorporating disease impact into reflectance-based decision support tools to account for its effects on spectral data. This effect was successfully mitigated by employing the NDRE vegetation index calculated exclusively from the healthy portions of the leaves or by incorporating the proportion of damage into the model. However, these findings also highlight the necessity for further research specifically addressing the challenges presented by multiple stresses in crop phenotyping.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3