A High-Throughput Method for Accurate Extraction of Intact Rice Panicle Traits

Author:

Sun Jian1,Ren Zhengwei1,Cui Jiale1,Tang Chen1,Luo Tao1,Yang Wanneng1ORCID,Song Peng1ORCID

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, PR China.

Abstract

Rice panicle traits serve as critical indicators of both yield potential and germplasm resource quality. However, traditional manual measurements of these traits, which typically involve threshing, are not only laborious and time-consuming but also prone to introducing measurement errors. This study introduces a high-throughput and nondestructive method, termed extraction of panicle traits (EOPT), along with the software Panicle Analyzer, which is designed to assess unshaped intact rice panicle traits, including the panicle grain number, grain length, grain width, and panicle length. To address the challenge of grain occlusion within an intact panicle, we define a panicle morphology index to quantify the occlusion levels among the rice grains within the panicle. By calibrating the grain number obtained directly from rice panicle images based on the panicle morphology index, we substantially improve the grain number detection accuracy. For measuring grain length and width, the EOPT selects rice grains using an intersection over union threshold of 0.8 and a confidence threshold of 0.7 during the grain detection process. The mean values of these grains were calculated to represent all the panicle grain lengths and widths. In addition, EOPT extracted the main path of the skeleton of the rice panicle using the Astar algorithm to determine panicle lengths. Validation on a dataset of 1,554 panicle images demonstrated the effectiveness of the proposed method, achieving 93.57% accuracy in panicle grain counting with a mean absolute percentage error of 6.62%. High accuracy rates were also recorded for grain length (96.83%) and panicle length (97.13%). Moreover, the utility of EOPT was confirmed across different years and scenes, both indoors and outdoors. A genome-wide association study was conducted, leveraging the phenotypic traits obtained via EOPT and genotypic data. This study identified single-nucleotide polymorphisms associated with grain length, width, number per panicle, and panicle length, further emphasizing the utility and potential of this method in advancing rice breeding.

Funder

Key Technologies Research and Development Program

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3