Prediction of Needle Physiological Traits Using UAV Imagery for Breeding Selection of Slash Pine

Author:

Niu Xiaoyun1,Song Zhaoying12,Xu Cong3,Wu Haoran12,Luan Qifu2,Jiang Jingmin2,Li Yanjie2

Affiliation:

1. College of Landscape Architecture and Tourism, Hebei Agriculture University, Baoding 071000, China.

2. Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou 311400, Zhejiang Province, China.

3. New Zealand School of Forestry, University of Canterbury, Private Bag 4800, 8041 Christchurch, New Zealand.

Abstract

Leaf nitrogen (N) content and nonstructural carbohydrate (NSC) content are 2 important physiological indicators that reflect the growth state of trees. Rapid and accurate measurement of these 2 traits multitemporally enables dynamic monitoring of tree growth and efficient tree breeding selection. Traditional methods to monitor N and NSC are time-consuming, are mostly used on a small scale, and are nonrepeatable. In this paper, the performance of unmanned aerial vehicle multispectral imaging was evaluated over 11 months of 2021 on the estimation of canopy N and NSC contents from 383 slash pine trees. Four machine learning methods were compared to generate the optimal model for N and NSC prediction. In addition, the temporal scale of heritable variation for N and NSC was evaluated. The results show that the gradient boosting machine model yields the best prediction results on N and NSC, with R 2 values of 0.60 and 0.65 on the validation set (20%), respectively. The heritability ( h 2 ) of all traits in 11 months ranged from 0 to 0.49, with the highest h 2 for N and NSC found in July and March (0.26 and 0.49, respectively). Finally, 5 families with high N and NSC breeding values were selected. To the best of our knowledge, this is the first study to predict N and NSC contents in trees using time-series unmanned aerial vehicle multispectral imaging and estimating the genetic variation of N and NSC along a temporal scale, which provides more reliable information about the overall performance of families in a breeding program.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3