Dynamic Analysis of Chlorophyll a Fluorescence in Response to Time-Variant Excitations during Strong Actinic Illumination and Application in Probing Plant Water Loss

Author:

Chen Junqing1,Guo Ya2,Tan Jinglu1

Affiliation:

1. Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA.

2. School of IOT, Jiangnan University, Wuxi, Jiangsu, China.

Abstract

Magnitude measurement of chlorophyll a fluorescence (ChlF) involves challenges, and dynamic responses to variable excitations may offer an alternative. In this research, ChlF was measured during strong actinic light by using a pseudo-random binary sequence as a time-variant multiple-frequency illumination excitation. The responses were observed in the time domain but were primarily analyzed in the frequency domain in terms of amplitude gain variations. The excitation amplitude was varied, and moisture loss was used to induce changes in the plant samples for further analysis. The results show that when nonphotochemical quenching (NPQ) activities start, the amplitude of ChlF responses vary, making the ChlF responses to illumination excitations nonlinear and nonstationary. NPQ influences the ChlF responses in low frequencies, most notably below 0.03 rad/s. The low-frequency gain is linearly correlated with NPQ and can thus be used as a reference to compensate for the variations in ChlF measurements. The high-frequency amplitude gain showed a stronger correlation with moisture loss after correction with the low-frequency gain. This work demonstrates the usefulness of dynamic characteristics in broadening the applications of ChlF measurements in plant analysis and offers a way to mitigate variabilities in ChlF measurements during strong actinic illumination.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3