OIP5 Interacts with NCK2 to Mediate Human Spermatogonial Stem Cell Self-Renewal and Apoptosis through Cell Cyclins and Cycle Progression and Its Abnormality Is Correlated with Male Infertility

Author:

Cui Yinghong1,Chen Wei1,Du Li1,He Zuping1

Affiliation:

1. The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province; The Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, Hunan, China.

Abstract

Spermatogonial stem cells (SSCs) have important applications in both reproduction and regenerative medicine. Nevertheless, specific genes and signaling transduction pathways in mediating fate decisions of human SSCs remain elusive. Here, we have demonstrated for the first time that OIP5 (Opa interacting protein 5) controlled the self-renewal and apoptosis of human SSCs. RNA sequencing identified that NCK2 was a target for OIP5 in human SSCs, and interestingly, OIP5 could interact with NCK2 as shown by Co-IP (co-immunoprecipitation), IP-MS (mass spectrometry), and GST pulldown assays. NCK2 silencing decreased human SSC proliferation and DNA synthesis but enhanced their apoptosis. Notably, NCK2 knockdown reversed the influence of OIP5 overexpression on human SSCs. Moreover, OIP5 inhibition decreased the numbers of human SSCs at S and G2/M phases, while the levels of numerous cell cycle proteins, including cyclins A2, B1, D1, E1 and H, especially cyclin D1, were remarkably reduced. Significantly, whole-exome sequencing of 777 patients with nonobstructive azoospermia (NOA) revealed 54 single-nucleotide polymorphism mutations of the OIP5 gene (6.95%), while the level of OIP5 protein was obviously lower in testes of NOA patients compared to fertile men. Collectively, these results implicate that OIP5 interacts with NCK2 to modulate human SSC self-renewal and apoptosis via cell cyclins and cell cycle progression and that its mutation and/or lower expression is correlated with azoospermia. As such, this study offers novel insights into molecular mechanisms underlying the fate determinations of human SSCs and the pathogenesis of NOA, and it provides new targets for treating male infertility.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3