Artificial Humic Acid Mediated Carbon–Iron Coupling to Promote Carbon Sequestration

Author:

Lan Yibo12,Gai Shuang12,Cheng Kui23,Liu Zhuqing12,Antonietti Markus4,Yang Fan12

Affiliation:

1. School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.

2. International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China.

3. College of Engineering, Northeast Agricultural University, Harbin 150030, China.

4. Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany.

Abstract

Fe (hydr)oxides have a substantial impact on the structure and stability of soil organic carbon (SOC) pools and also drive organic carbon turnover processes via reduction–oxidation reactions. Currently, many studies have paid much attention to organic matter–Fe mineral–microbial interactions on SOC turnover, while there is few research on how exogenous carbon addition abiotically regulates the intrinsic mechanisms of Fe-mediated organic carbon conversion. The study investigated the coupling process of artificial humic acid (A-HA) and Fe(hydr)oxide, the mechanism of inner-sphere ligands, and the capacity for carbon sequestration using transmission electron microscopy, thermogravimetric, x-ray photoelectron spectroscopy, and wet-chemical disposal. Furthermore, spherical aberration-corrected scanning transmission electron microscopy–electron energy loss spectroscopy and Mössbauer spectra have been carried out to demonstrate the spatial heterogeneity of A-HA/Fe (hydr)oxides and reveal the relationship between the increase in Fe-phase crystallinity and redox sensitivity and the accumulation of organic carbon. Additionally, the dynamics of soil structures on a microscale, distribution of carbon–iron microdomains, and the cementing-gluing effect can be observed in the constructing nonliving anthropogenic soils, confirming that the formation of stable aggregates is an effective approach to achieving organic carbon indirect protection. We propose that exogenous organic carbon inputs, specifically A-HA, could exert a substantial but hitherto unexplored effect on the geochemistry of iron–carbon turnover and sequestration in anoxic water/solid soils and sediments.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Outstanding Youth Project of Heilongjiang Province

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3