Cross-Modal Graph Semantic Communication Assisted by Generative AI in the Metaverse for 6G

Author:

Chen Mingkai1,Liu Minghao1,Wang Congyan1,Song Xingnuo1,Zhang Zhe1,Xie Yannan2,Wang Lei1

Affiliation:

1. Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.

2. State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Abstract

Recently, the development of the Metaverse has become a frontier spotlight, which is an important demonstration of the integration innovation of advanced technologies in the Internet. Moreover, artificial intelligence (AI) and 6G communications will be widely used in our daily lives. However, the effective interactions with the representations of multimodal data among users via 6G communications is the main challenge in the Metaverse. In this work, we introduce an intelligent cross-modal graph semantic communication approach based on generative AI and 3-dimensional (3D) point clouds to improve the diversity of multimodal representations in the Metaverse. Using a graph neural network, multimodal data can be recorded by key semantic features related to the real scenarios. Then, we compress the semantic features using a graph transformer encoder at the transmitter, which can extract the semantic representations through the cross-modal attention mechanisms. Next, we leverage a graph semantic validation mechanism to guarantee the exactness of the overall data at the receiver. Furthermore, we adopt generative AI to regenerate multimodal data in virtual scenarios. Simultaneously, a novel 3D generative reconstruction network is constructed from the 3D point clouds, which can transfer the data from images to 3D models, and we infer the multimodal data into the 3D models to increase realism in virtual scenarios. Finally, the experiment results demonstrate that cross-modal graph semantic communication, assisted by generative AI, has substantial potential for enhancing user interactions in the 6G communications and Metaverse.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3