Hierarchical Spinning of Janus Textiles with Anisotropic Wettability for Wound Healing

Author:

Zhang Han1,Sun Lingyu1,Guo Jiahui1,Zhao Yuanjin12

Affiliation:

1. Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.

2. Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.

Abstract

Wound healing and tissue repair are recognized as basic human health problems worldwide. Attempts to accelerate the reparative process are focused on developing functional wound dressings. Herein, we present novel Janus textiles with anisotropic wettability from hierarchical microfluidic spinning for wound healing. The hydrophilic hydrogel microfibers from microfluidics are woven into textiles for freeze-drying treatment, followed by the deposition of electrostatic spinning nanofibers composed of hydrophobic polylactic acid (PLA) and silver nanoparticles. The electrospun nanofiber layer can be well coupled with the hydrogel microfiber layer to generate Janus textiles with anisotropic wettability due to the roughness of the hydrogel textile surface and the incomplete evaporation of PLA solution when reaching the surface. For wound treatment with the hydrophobic PLA side contacting the wound surface, the wound exudate can be pumped from the hydrophobic to the hydrophilic side based on the wettability differential derived drainage force. During this process, the hydrophobic side of the Janus textile can prevent excess fluid from infiltrating the wound again, preventing excessive moisture and preserving the breathability of the wound. In addition, the silver nanoparticles contained in the hydrophobic nanofibers could impart the textiles with good antibacterial effect, which further promote the wound healing efficiency. These features indicate that the described Janus fiber textile has great application potential in the field of wound treatment.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3