Masked Generative Light Field Prompting for Pixel-Level Structure Segmentations

Author:

Wang Mianzhao123,Shi Fan123ORCID,Cheng Xu123,Chen Shengyong123

Affiliation:

1. The Engineering Research Center of Learning-Based Intelligent System (Ministry of Education), Tianjin University of Technology, Tianjin 300384, China.

2. Key Laboratory of Computer Vision and System (Ministry of Education), Tianjin University of Technology, Tianjin 300384, China.

3. School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

Abstract

Pixel-level structure segmentations have attracted considerable attention, playing a crucial role in autonomous driving within the metaverse and enhancing comprehension in light field-based machine vision. However, current light field modeling methods fail to integrate appearance and geometric structural information into a coherent semantic space, thereby limiting the capability of light field transmission for visual knowledge. In this paper, we propose a general light field modeling method for pixel-level structure segmentation, comprising a generative light field prompting encoder (LF-GPE) and a prompt-based masked light field pretraining (LF-PMP) network. Our LF-GPE, serving as a light field backbone, can extract both appearance and geometric structural cues simultaneously. It aligns these features into a unified visual space, facilitating semantic interaction. Meanwhile, our LF-PMP, during the pretraining phase, integrates a mixed light field and a multi-view light field reconstruction. It prioritizes considering the geometric structural properties of the light field, enabling the light field backbone to accumulate a wealth of prior knowledge. We evaluate our pretrained LF-GPE on two downstream tasks: light field salient object detection and semantic segmentation. Experimental results demonstrate that LF-GPE can effectively learn high-quality light field features and achieve highly competitive performance in pixel-level segmentation tasks.

Funder

National Natural Science Foundation of China

2022 Tianjin Research and Innovation Project

Tianjin University of Technology 2022 Post-raduate Research and Innovation Practice Project

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3