Organic Passivation of Deep Defects in Cu(In,Ga)Se 2 Film for Geometry-Simplified Compound Solar Cells

Author:

Chen Jingwei1,Chang Xuan1,Guo Jianxin1,Gao Qing1,Zhang Xuning1,Liu Chenxu1,Yang Xueliang1,Zhou Xin1,Chen Bingbing1,Li Feng2,Wang Jianming3,Yan Xiaobing1,Song Dengyuan3,Li Han4,Flavel Benjamin S.4,Wang Shufang1,Chen Jianhui1

Affiliation:

1. Advanced Passivation Technology Lab, College of Physics Science and Technology, Hebei University, Baoding, 071002, China.

2. State Key Laboratory of Photovoltaic Materials & Technology, Yingli Green Energy Holding Co., Ltd., Baoding 071051, China.

3. Das Solar Co., Ltd., No 43 Bailing South Road, Quzhou Green Industry Clustering Zone, Quzhou, Zhejiang Province, 324022, China.

4. Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.

Abstract

Diverse defects in copper indium gallium diselenide solar cells cause nonradiative recombination losses and impair device performance. Here, an organic passivation scheme for surface and grain boundary defects is reported, which employs an organic passivation agent to infiltrate the copper indium gallium diselenide thin films. A transparent conductive passivating (TCP) film is then developed by incorporating metal nanowires into the organic polymer and used in solar cells. The TCP films have a transmittance of more than 90% in the visible and nearinfrared spectra and a sheet resistance of ~10.5 Ω/sq. This leads to improvements in the open-circuit voltage and the efficiency of the organic passivated solar cells compared with control cells and paves the way for novel approaches to copper indium gallium diselenide defect passivation and possibly other compound solar cells.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference57 articles.

1. Nonradiative recombination via deep impurity levels in semiconductors: The excitonic auger mechanism;Hangleiter A;Phys Rev B,1988

2. Charge carrier separation in solar cells;Wurfel U;IEEE J Photovolt,2015

3. Minimizing non-radiative recombination losses in perovskite solar cells;Luo D;Nat Rev Mater,2020

4. Analysis for non-radiative recombination and resistance loss in chalcopyrite and kesterite solar cells;Yamaguchi M;Jpn J Appl Phys,2021

5. Silicon solar cells with passivating contacts: Classification and performance;Yan D;Prog Photovolt Res Appl,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transistor-Based Synaptic Devices for Neuromorphic Computing;Crystals;2024-01-09

2. Progress of additives for morphology control in organic photovoltaics;Chinese Chemical Letters;2023-12

3. Design and Structural Investigation of CuIn(Ga)Se2 Films for Solar Energy Applications;2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP);2023-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3