Haptic Sensing and Feedback Techniques toward Virtual Reality

Author:

Shi Yuxiang12,Shen Guozhen12

Affiliation:

1. School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.

2. Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China.

Abstract

Haptic interactions between human and machines are essential for information acquisition and object manipulation. In virtual reality (VR) system, the haptic sensing device can gather information to construct virtual elements, while the haptic feedback part can transfer feedbacks to human with virtual tactile sensation. Therefore, exploring high-performance haptic sensing and feedback interface imparts closed-loop haptic interaction to VR system. This review summarizes state-of-the-art VR-related haptic sensing and feedback techniques based on the hardware parts. For the haptic sensor, we focus on mechanism scope (piezoresistive, capacitive, piezoelectric, and triboelectric) and introduce force sensor, gesture translation, and touch identification in the functional view. In terms of the haptic feedbacks, methodologies including mechanical, electrical, and elastic actuators are surveyed. In addition, the interactive application of virtual control, immersive entertainment, and medical rehabilitation is also summarized. The challenges of virtual haptic interactions are given including the accuracy, durability, and technical conflicts of the sensing devices, bottlenecks of various feedbacks, as well as the closed-loop interaction system. Besides, the prospects are outlined in artificial intelligence of things, wise information technology of medicine, and multimedia VR areas.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

China National Postdoctoral Program for Innovative Talents

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3