Single-Exosome Profiling Identifies ITGB3+ and ITGAM+ Exosome Subpopulations as Promising Early Diagnostic Biomarkers and Therapeutic Targets for Colorectal Cancer

Author:

Guo Wei1,Cai Yanling123,Liu Xianming4,Ji Yuge1,Zhang Cuiyu1,Wang Liyan5,Liao Wenting6,Liu Yuefei6,Cui Nan6,Xiang Jinsheng6,Li Zesong23,Wu Di67,Li Jingxin1

Affiliation:

1. Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.

2. Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518035, China.

3. Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518035, China.

4. Department of Gastrointestinal Surgery, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China.

5. Center for Experimental Nuclear Medicine and Electron Microscope, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.

6. Shenzhen SecreTech Co., Ltd., Shenzhen, China.

7. Vesicode AB, Nobelsvag 16, Solna, Sweden.

Abstract

Tumor metastasis is a hallmark of colorectal cancer (CRC), in which exosome plays a crucial role with its function in intercellular communication. Plasma exosomes were collected from healthy control (HC) donors, localized primary CRC and liver-metastatic CRC patients. We performed proximity barcoding assay (PBA) for single-exosome analysis, which enabled us to identify the alteration in exosome subpopulations associated with CRC progression. By in vitro and in vivo experiments, the biological impact of these subpopulations on cancer proliferation, migration, invasion, and metastasis was investigated. The potential application of exosomes as diagnostic biomarkers was evaluated in 2 independent validation cohorts by PBA. Twelve distinct exosome subpopulations were determined. We found 2 distinctly abundant subpopulations: one ITGB3-positive and the other ITGAM-positive. The ITGB3-positive cluster is rich in liver-metastatic CRC, compared to both HC group and primary CRC group. On the contrary, ITGAM-positive exosomes show a large-scale increase in plasma of HC group, compared to both primary CRC and metastatic CRC groups. Notably, both discovery cohort and validation cohort verified ITGB3+ exosomes as potential diagnostic biomarker. ITGB3+ exosomes promote proliferation, migration, and invasion capability of CRC. In contrast, ITGAM+ exosomes suppress CRC development. Moreover, we also provide evidence that one of the sources of ITGAM+ exosomes is macrophage. ITGB3+ exosomes and ITGAM+ exosomes are proven 2 potential diagnostic, prognostic, and therapeutic biomarkers for management of CRC.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3