Dear-DIA XMBD : Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics

Author:

He Qingzu12,Zhong Chuan-Qi34,Li Xiang14,Guo Huan1,Li Yiming1,Gao Mingxuan5,Yu Rongshan56,Liu Xianming7,Zhang Fangfei89,Guo Donghui10,Ye Fangfu2,Guo Tiannan8911,Shuai Jianwei1246,Han Jiahuai346

Affiliation:

1. Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.

2. Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.

3. School of Life Sciences, Xiamen University, Xiamen 361102, China.

4. State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen 361102, China.

5. Department of Computer Science, Xiamen University, Xiamen 361005, China.

6. National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China.

7. Bruker (Beijing) Scientific Technology Co. Ltd., Beijing, China.

8. Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.

9. Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China.

10. Department of Electronic Engineering, Xiamen University, Xiamen 361005, China.

11. Westlake Omics Ltd., Yunmeng Road 1, Hangzhou, China.

Abstract

Data-independent acquisition (DIA) technology for protein identification from mass spectrometry and related algorithms is developing rapidly. The spectrum-centric analysis of DIA data without the use of spectra library from data-dependent acquisition data represents a promising direction. In this paper, we proposed an untargeted analysis method, Dear-DIA XMBD , for direct analysis of DIA data. Dear-DIA XMBD first integrates the deep variational autoencoder and triplet loss to learn the representations of the extracted fragment ion chromatograms, then uses the k -means clustering algorithm to aggregate fragments with similar representations into the same classes, and finally establishes the inverted index tables to determine the precursors of fragment clusters between precursors and peptides and between fragments and peptides. We show that Dear-DIA XMBD performs superiorly with the highly complicated DIA data of different species obtained by different instrument platforms. Dear-DIA XMBD is publicly available at https://github.com/jianweishuai/Dear-DIA-XMBD .

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3