Inhibition of ALOX12–12-HETE Alleviates Lung Ischemia–Reperfusion Injury by Reducing Endothelial Ferroptosis-Mediated Neutrophil Extracellular Trap Formation

Author:

Li Chongwu123,Gao Peigen12,Zhuang Fenghui12,Wang Tao12,Wang Zeyu12,Wu Guodong12,Zhou Ziheng12,Xie Huikang4,Xie Dong12,Zhao Deping12,Wu Junqi12ORCID,Chen Chang12ORCID

Affiliation:

1. Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.

2. Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China.

3. Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

4. Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.

Abstract

Lung ischemia–reperfusion injury (IRI) stands as the primary culprit behind primary graft dysfunction (PGD) after lung transplantation, yet viable therapeutic options are lacking. In the present study, we used a murine hilar clamp (1 h) and reperfusion (3 h) model to study IRI. The left lung tissues were harvested for metabolomics, transcriptomics, and single-cell RNA sequencing. Metabolomics of plasma from human lung transplantation recipients was also performed. Lung histology, pulmonary function, pulmonary edema, and survival analysis were measured in mice. Integrative analysis of metabolomics and transcriptomics revealed a marked up-regulation of arachidonate 12-lipoxygenase (ALOX12) and its metabolite 12-hydroxyeicosatetraenoic acid (12-HETE), which played a pivotal role in promoting ferroptosis and neutrophil extracellular trap (NET) formation during lung IRI. Additionally, single-cell RNA sequencing revealed that ferroptosis predominantly occurred in pulmonary endothelial cells. Importantly, Alox12 -knockout (KO) mice exhibited a notable decrease in ferroptosis, NET formation, and tissue injury. To investigate the interplay between endothelial ferroptosis and NET formation, a hypoxia/reoxygenation (HR) cell model using 2 human endothelial cell lines was established. By incubating conditioned medium from HR cell model with neutrophils, we found that the liberation of high mobility group box 1 (HMGB1) from endothelial cells undergoing ferroptosis facilitated the formation of NETs by activating the TLR4/MYD88 pathway. Last, the administration of ML355, a targeted inhibitor of Alox12, mitigated lung IRI in both murine hilar clamp/reperfusion and rat left lung transplant models. Collectively, our study indicates ALOX12 as a promising therapeutic strategy for lung IRI.

Funder

Science and Technology Innovation Plan Of Shanghai Science and Technology Commission

The Young Talent Program of Shanghai Pulmonary Hospital

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3