Fast and Adaptive Multi-Agent Planning under Collaborative Temporal Logic Tasks via Poset Products

Author:

Liu Zesen1,Guo Meng1,Bao Weimin2,Li Zhongkui1ORCID

Affiliation:

1. Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.

2. Science and Technology Commission of China Aerospace Science and Technology Corporation, Beijing 100048, China.

Abstract

Efficient coordination and planning is essential for large-scale multi-agent systems that collaborate in a shared dynamic environment. Heuristic search methods or learning-based approaches often lack the guarantee on correctness and performance. Moreover, when the collaborative tasks contain both spatial and temporal requirements, e.g., as linear temporal logic (LTL) formulas, formal methods provide a verifiable framework for task planning. However, since the planning complexity grows exponentially with the number of agents and the length of the task formula, existing studies are mostly limited to small artificial cases. To address this issue, a new planning paradigm is proposed in this work for system-wide temporal task formulas that are released online and continually. It avoids two common bottlenecks in the traditional methods, i.e., (a) the direct translation of the complete task formula to the associated Büchi automaton and (b) the synchronized product between the Büchi automaton and the transition models of all agents. Instead, an adaptive planning algorithm is proposed, which computes the product of relaxed partially ordered sets (R-posets) on-the-fly and assigns these subtasks to the agents subject to the ordering constraints. It is shown that the first valid plan can be derived with a polynomial time and memory complexity with respect to the system size and the formula length. Our method can take into account task formulas with a length of more than 400 and a fleet with more than 400 agents, while most existing methods fail at the formula length of 25 within a reasonable duration. The proposed method is validated on large fleets of service robots in both simulation and hardware experiments.

Funder

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3