Strain Engineering and Halogen Compensation of Buried Interface in Polycrystalline Halide Perovskites

Author:

Zhou Bin1,Shang Chuanzhen1,Wang Chenyun1,Qu Duo1,Qiao Jingyuan1,Zhang Xinyue1,Zhao Wenying1,Han Ruilin1,Dong Shuxin2,Xue Yuhe3,Ke You1,Ye Fengjun4,Yang Xiaoyu5,Tu Yongguang16,Huang Wei1678

Affiliation:

1. Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China.

2. Honors College, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China.

3. Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China.

4. Beijing Solarverse Optoelectronic Technology Co. Ltd, Beijing 100176, China.

5. Intelligent Display Research Institute, Leyard Optoelectronic Co. Ltd, Beijing 100091, China.

6. Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo 315103, China.

7. Key Laboratory of Flexible Electronics (KLoFE) and Institution of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), NanjingTech University, Nanjing, Jiangsu 211816, China.

8. Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China.

Abstract

Inverted perovskite solar cells based on weakly polarized hole-transporting layers suffer from the problem of polarity mismatch with the perovskite precursor solution, resulting in a nonideal wetting surface. In addition to the bottom-up growth of the polycrystalline halide perovskite, this will inevitably worse the effects of residual strain and heterogeneity at the buried interface on the interfacial carrier transport and localized compositional deficiency. Here, we propose a multifunctional hybrid pre-embedding strategy to improve substrate wettability and address unfavorable strain and heterogeneities. By exposing the buried interface, it was found that the residual strain of the perovskite films was markedly reduced because of the presence of organic polyelectrolyte and imidazolium salt, which not only realized the halogen compensation and the coordination of Pb 2+ but also the buried interface morphology and defect recombination that were well regulated. Benefitting from the above advantages, the power conversion efficiency of the targeted inverted devices with a bandgap of 1.62 eV was 21.93% and outstanding intrinsic stability. In addition, this coembedding strategy can be extended to devices with a bandgap of 1.55 eV, and the champion device achieved a power conversion efficiency of 23.74%. In addition, the optimized perovskite solar cells retained 91% of their initial efficiency (960 h) when exposed to an ambient relative humidity of 20%, with a T80 of 680 h under heating aging at 65 °C, exhibiting elevated durability.

Funder

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3