Affiliation:
1. Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,
Chinese Academy of Forestry, Nanjing 210042, China.
2. College of Chemical Engineering, Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources,
Nanjing Forestry University, Nanjing 210037, China.
Abstract
Despite the promise of high flexibility and conformability of hydrogel ionic conductors, existing polymeric conductive hydrogels have long suffered from compromises in mechanical, electrical, and cryoadaptive properties due to monotonous functional improvement strategies, leading to lingering challenges. Here, we propose an all-in-one strategy for the preparation of poly(acrylic acid)/cellulose (PAA/Cel) hydrogel ionic conductors in a facile yet effective manner combining acrylic acid and salt-dissolved cellulose, in which abundant zinc ions simultaneously form strong coordination interactions with the two polymers, while free solute salts contribute to ionic conductivity and bind water molecules to prevent freezing. Therefore, the developed PAA/Cel hydrogel simultaneously achieved excellent mechanical, conductive, and cryogenically adaptive properties, with performances of 42.5 MPa for compressive strength, 1.6 MPa for tensile strength, 896.9% for stretchability, 9.2 MJ m
−3
for toughness, 59.5 kJ m
−2
for fracture energy, and 13.9 and 6.2 mS cm
−1
for ionic conductivity at 25 and −70 °C, respectively. Enabled by these features, the resultant hydrogel ionic conductor is further demonstrated to be assembled as a self-powered electronic skin (e-skin) with high signal-to-noise ratio for use in monitoring movement and physiological signals regardless of cold temperatures, with hinting that could go beyond high-performance hydrogel ionic conductors.
Funder
National Natural Science Foundation of China
Forestry Science and Technology Innovation and Extension Project of Jiangsu Province
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献