Highly Strong, Tough, and Cryogenically Adaptive Hydrogel Ionic Conductors via Coordination Interactions

Author:

Wang Zhuomin12,Wang Siheng1ORCID,Zhang Lei1ORCID,Liu He1ORCID,Xu Xu2ORCID

Affiliation:

1. Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Chinese Academy of Forestry, Nanjing 210042, China.

2. College of Chemical Engineering, Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.

Abstract

Despite the promise of high flexibility and conformability of hydrogel ionic conductors, existing polymeric conductive hydrogels have long suffered from compromises in mechanical, electrical, and cryoadaptive properties due to monotonous functional improvement strategies, leading to lingering challenges. Here, we propose an all-in-one strategy for the preparation of poly(acrylic acid)/cellulose (PAA/Cel) hydrogel ionic conductors in a facile yet effective manner combining acrylic acid and salt-dissolved cellulose, in which abundant zinc ions simultaneously form strong coordination interactions with the two polymers, while free solute salts contribute to ionic conductivity and bind water molecules to prevent freezing. Therefore, the developed PAA/Cel hydrogel simultaneously achieved excellent mechanical, conductive, and cryogenically adaptive properties, with performances of 42.5 MPa for compressive strength, 1.6 MPa for tensile strength, 896.9% for stretchability, 9.2 MJ m −3 for toughness, 59.5 kJ m −2 for fracture energy, and 13.9 and 6.2 mS cm −1 for ionic conductivity at 25 and −70 °C, respectively. Enabled by these features, the resultant hydrogel ionic conductor is further demonstrated to be assembled as a self-powered electronic skin (e-skin) with high signal-to-noise ratio for use in monitoring movement and physiological signals regardless of cold temperatures, with hinting that could go beyond high-performance hydrogel ionic conductors.

Funder

National Natural Science Foundation of China

Forestry Science and Technology Innovation and Extension Project of Jiangsu Province

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3