Early-Life Gut Microbiota Governs Susceptibility to Colitis via Microbial-Derived Ether Lipids

Author:

Liu Yanjun12,Jiao Chunhua34,Zhang Tao5,Li Xue1,Li Panpan1,Lu Meishan1,Ye Zhan1,Du Yanpeng1,Du Runfeng1,Zhang Wenlong3,Xu Jie2,Zheng Zhaojun1,Xu Yongjiang1,Xue Changhu2,Zhang Yi34,Liu Yuanfa1

Affiliation:

1. State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.

2. College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.

3. Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.

4. Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.

5. College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China.

Abstract

Localized intestine inflammation could induce short-term increases in colonic oxygenation and leads to increases in the aerobic bacteria population and reduction in the anaerobic bacteria population by changing the intestinal environment. However, the mechanisms involved and the associated functions of intestinal anaerobes in gut health still remain unclear. Here, we found that early-life depletion of gut microbiota exacerbated later colitis, while mid-life microbiota depletion showed partially reduced colitis. Notably, we observed that early-life gut microbiota depletion confers susceptibility to ferroptosis in colitis. In contrast, restitution of early-life microbiota conferred protection against colitis and inhibited ferroptosis triggered by gut microbiota dysbiosis. Similarly, colonization with anaerobic microbiota from young mice suppressed colitis. These results may attribute to high abundance of plasmalogen-positive (plasmalogen synthase [PlsA/R]-positive) anaerobes and plasmalogens (one of the common ether lipids) in young mice but reduced abundance in the development of inflammatory bowel disease. Early-life anaerobic bacteria elimination also resulted in the aggravation of colitis, while this aggravation phenotype was reverted by plasmalogen administration. Interestingly, plasmalogens inhibited ferroptosis triggered by microbiota dysbiosis. We further find that the alkenyl-ether group of plasmalogens was critical to colitis prevention and ferroptosis inhibition. These data point to one of the mechanisms by which the gut microbiota controls susceptibility to colitis and ferroptosis early in life via microbial-derived ether lipids.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3