Affiliation:
1. State Key Laboratory of Efficient Production of Forest Resources,
Beijing Forestry University, Beijing 100083, China.
2. Beijing Key Laboratory of Lignocellulosic Chemistry,
Beijing Forestry University, Beijing 100083, China.
3. Hunan Nonferrous Metals Research Institute Co. Ltd., Changsha 410000, China.
Abstract
Utilizing renewable lignocellulosic resources for wastewater remediation is crucial to achieving sustainable social development. However, the resulting by-products and the synthetic process characterized by complexity, high cost, and environmental pollution limit the further development of lignocellulose-based materials. Here, we developed a sustainable strategy that involved a new functional deep eutectic solvent (DES) to deconstruct industrial xylose residue into cellulose-rich residue with carboxyl groups, lignin with carboxyl and quaternary ammonium salt groups, and DES effluent rich in lignin fragments. Subsequently, these fractions equipped with customized functionality were used to produce efficient wastewater remediation materials in cost-effective and environmentally sound manners, namely, photocatalyst prepared by carboxyl-modified cellulose residue, biochar-based adsorbent originated from modified lignin, and flocculant synthesized by self-catalytic in situ copolymerization of residual DES effluent at room temperature. Under the no-waste principle, this strategy upgraded the whole components of waste lignocellulose into high-value-added wastewater remediation materials with excellent universality. These materials in coordination with each other can stepwise purify high-hazardous mineral processing wastewater into drinkable water, including the removal of 99.81% of suspended solids, almost all various heavy metal ions, and 97.09% chemical oxygen demand, respectively. This work provided promising solutions and blueprints for lignocellulosic resources to alleviate water shortages while also advancing the global goal of carbon neutrality.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献