Fast Blood Oxygenation through Hemocompatible Asymmetric Polymer of Intrinsic Microporosity Membranes

Author:

Huang Xinxi1,Huang Junping1,Su Pengcheng1,Li Wanbin1

Affiliation:

1. Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.

Abstract

Membrane technology has attracted considerable attention for chemical and medical applications, among others. Artificial organs play important roles in medical science. A membrane oxygenator, also known as artificial lung, can replenish O 2 and remove CO 2 of blood to maintain the metabolism of patients with cardiopulmonary failure. However, the membrane, a key component, is subjected to inferior gas transport property, leakage propensity, and insufficient hemocompatibility. In this study, we report efficient blood oxygenation by using an asymmetric nanoporous membrane that is fabricated using the classic nonsolvent-induced phase separation method for polymer of intrinsic microporosity-1. The intrinsic superhydrophobic nanopores and asymmetric configuration endow the membrane with water impermeability and gas ultrapermeability, up to 3,500 and 1,100 gas permeation units for CO 2 and O 2 , respectively. Moreover, the rational hydrophobic–hydrophilic nature, electronegativity, and smoothness of the surface enable the substantially restricted protein adsorption, platelet adhesion and activation, hemolysis, and thrombosis for the membrane. Importantly, during blood oxygenation, the asymmetric nanoporous membrane shows no thrombus formation and plasma leakage and exhibits fast O 2 and CO 2 transport processes with exchange rates of 20 to 60 and 100 to 350 ml m −2 min −1 , respectively, which are 2 to 6 times higher than those of conventional membranes. The concepts reported here offer an alternative route to fabricate high-performance membranes and expand the possibilities of nanoporous materials for membrane-based artificial organs.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3