Electrocatalytic Lignin Valorization into Aromatic Products via Oxidative Cleavage of C α −C β Bonds

Author:

Xu Jianing1,Meng Juan2,Hu Yi1,Liu Yongzhuang1,Lou Yuhan1,Bai Wenjing1,Dou Shuo1ORCID,Yu Haipeng1,Wang Shuangyin3

Affiliation:

1. Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.

2. School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China.

3. State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Abstract

Lignin is the most promising candidate for producing aromatic compounds from biomass. However, the challenge lies in the cleavage of C−C bonds between lignin monomers under mild conditions, as these bonds have high dissociation energy. Electrochemical oxidation, which allows for mild cleavage of C−C bonds, is considered an attractive solution. To achieve low-energy consumption in the valorization of lignin, the use of highly efficient electrocatalysts is essential. In this study, a meticulously designed catalyst consisting of cobalt-doped nickel (oxy)hydroxide on molybdenum disulfide heterojunction was developed. The presence of molybdenum in a high valence state promoted the adsorption of tert -butyl hydroperoxide, leading to the formation of critical radical intermediates. In addition, the incorporation of cobalt doping regulated the electronic structure of nickel, resulting in a lower energy barrier. As a result, the heterojunction catalyst demonstrated a selectivity of 85.36% for cleaving the C α −C β bond in lignin model compound, achieving a substrate conversion of 93.69% under ambient conditions. In addition, the electrocatalyst depolymerized 49.82 wt% of soluble fractions from organosolv lignin (OL), resulting in a yield of up to 13 wt% of aromatic monomers. Significantly, the effectiveness of the prepared electrocatalyst was also demonstrated using industrial Kraft lignin (KL). Therefore, this research offers a practical approach for implementing electrocatalytic oxidation in lignin refining.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3